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Abstract
In this paper we study a simple spin model which has a non-interacting
Hamiltonian but constrained dynamics. The model, which is a simplification of
a purely topological cellular model (Davison L and Sherrington D 2000 J. Phys.
A: Math. Gen. 33 8615, Aste T and Sherrington D 1999 J. Phys. A: Math. Gen.
32 7049), displays glassy behaviour, involves activated processes and exhibits
two-step relaxation. This is a consequence of the existence of annihilation–
diffusion processes on two distinct timescales, one temperature independent
and the other an exponential function of inverse temperature. In fact, there are
several such inter-coupled microscopic processes and great richness therein.
Two versions of the model are considered, one with a single absorbing ground
state and the other with a highly degenerate ground state. These display
qualitatively similar but quantitatively distinct macroscopic behaviour and
related, but different, microscopic behaviour.

PACS numbers: 7510, 0550, 0240

1. Introduction

In a recent paper Davison and Sherrington [1] focussed on a purely topological tiling model [2]
which exhibited glassy dynamical behaviour. This was driven by a desire to investigate the
behaviour of supercooled liquids in a model which contained as few parameters as possible,
but still displayed the relevant physics. In this paper we continue the minimalistic approach,
and consider systems which are conceptually similar to the topological model, but have the
major advantage of involving variables (spins) based on a fixed lattice.

The original model was that of a two-dimensional topological froth, constructed by
tiling the plane using three-fold vertices only. However, unlike soap froths, the energy
was determined by the deviation of the cell topologies from a perfect hexagonal tiling:
E = ∑N

i (ni − 6)2, where ni is the number of sides of cell i, and the system evolved solely
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through stochastic T1-micro-dynamics with Glauber–Kawasaki probabilities. We found that
there was two-step relaxation at low temperatures, and formed the following conceptual picture
describing the evolution of the system. At low temperatures the system consists mainly of six-
sided cells, and there are two processes dominating the behaviour: on a fast timescale, pairs of
pentagon–heptagon defects diffuse freely through the hexagonal background, and on a slower
timescale isolated defects absorb or create pairs of defects. The latter can be considered to be
an activated process, as it is energetically unfavourable for such a pair of defects to be created.
This conceptual framework of two different processes leading to both fast and slow dynamics
is directly applicable to the lattice-based spin model with which this paper is concerned, and
thus one might expect it to yield qualitatively similar results to the topological model. Given
that this spin model is computationally simpler and more tractable, one might hope to be able
to probe more deeply, and to investigate to what extent one finds the same features displayed
by other kinetically constrained models (for examples see [3–11]). In fact, as we show below,
these expectations are borne out and it is possible to provide a physical understanding of the
features observed. It is also both possible and instructive to consider a generalization with a
very different (highly degenerate) ground state, which we cover in the latter half of the paper.

2. The model

The model we use comprises a perfect hexagonal tiling of the plane, with a variable (spin)
associated with each hexagon. The spin in cell i, denoted by si , is restricted to the values
0,±1. This is analogous to a topological froth in which the cells are all pentagons, hexagons
or heptagons, so that the topological charge qi = (6−ni) of each cell is restricted to the values
0,±1. However, the topological froth model has a non-periodic and dynamically changing
cell structure, whereas this model is firmly fixed on a perfect hexagonal tiling.

We define the energy as follows:

E = D

N∑
i=1

s2
i (1)

whereN is the total number of cells/spins in the system, andD may be positive or negative. The
case of D > 0 emulates the original topological model where hexagonal order is energetically
preferable, but D < 0 is also of interest, as we shall show. The dynamics conserve the total
spin of the system and we choose our starting configuration such that the total spin is always
zero, i.e.

N∑
i=1

si = 0 (2)

in analogy with the Euler rule
∑N

i (6 −ni) =0 which applies to a froth [12,13]. Therefore the
ground state for D > 0 consists of si = 0 for all spins, whereas for D < 0 the ground state is
degenerate, with half the spins taking the value +1 and half taking the value −1.

The system is allowed to evolve through local spin-flips which are similar to the T1 moves
performed on topological froths. In the latter two adjacent cells have their topological charges
decreased by 1, and their two common neighbours have their topological charges increased
by 1: see figure 1(a). In the present model the allowed move-sets consist of choosing a pair
of neighbouring cells and either increasing their spins by 1 unit, and decreasing those of their
common neighbours by 1 unit, or vice versa; both possibilities need to be allowed to avoid
chirality inhibiting movement of spins throughout the system.

The actual dynamical process is as follows. At each time step an edge is chosen randomly
on the hexagonal lattice; this defines a set of four cells as shown in figure 1(b). A choice is then
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Figure 1. Spin-flip rules for the 3-state spin model and the topological froth. (a) The T1 moves
for the topological froth. (b) The spin-flip rules for the present model: the total spin is conserved
and the choice of whether to attempt the upper or lower signs is made randomly at each time-step.
The quadruplet of cells is identified uniquely by the dashed edge e.

made randomly of whether to consider increasing the spins of the adjacent cells y and w (and
thus decreasing v, x) or vice versa, with equal probabilities for both cases. The probability of
actually performing the move is dependent on the energy change that would be incurred, and is
given by a temperature-dependent Metropolis–Kawasaki1 algorithm. Specifically, assuming
w and y have been chosen as candidates for an increase in spin, the energy change associated
with these spin-flips on spins sv, sw, sx, sy is:

�E(sw, sy; sv, sx) = 2D(2 + sw + sy − sv − sx) (3)

and the probability P of actually performing this move is:

P(sw, sy; sv, sx) = (1 − δsw,1)(1 − δsy ,1)(1 − δsv,−1)

×(1 − δsx ,−1)Min[1, exp(−β�E(sw, sy; sv, sx))] (4)

where β is the inverse temperature. The δ-functions ensure that the spins are forbidden to take
values other than ±1 or 0.

The simple form of equation (1), with no interaction between the cells, shows that this
system is thermodynamically trivial in equilibrium and all the static equilibrium properties
are readily calculable. However, the microscopic dynamics are constrained and non-trivial,
involving several spins simultaneously; this leads to glassy macro-dynamics.

Most of the data results from simulations on a system of size N = 9900, although, in
order to perform more accurate fits, in certain cases the system size was increased to 160 000.

1 We choose to use the Metropolis algorithm rather than Glauber dynamics as in previous work because the qualitative
features of the results show no dependence on which of these algorithms we choose, and Metropolis is the faster of
these two. The reference to Kawasaki is included to emphasize the fact that although more than one spin is flipped at
once, the total spin is conserved.
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However, unless otherwise stated, one should assume the former system size is in use. Periodic
boundary conditions are enforced in all cases.

This paper is structured in the following manner: first we present results for D > 0,
including a discussion on the processes involved in relaxation of the system; this is followed
with results for D < 0. Finally there is a more general discussion.

2.1. Brief review of the topological froth model

As one of the aims of this paper is to show that the behaviour of this model is indeed qualitatively
very similar to that of the topological froth, we shall briefly review the results for the topological
froth before proceeding [1, 2].

In simulations in which the system is cooled at a variety of different rates, one finds strong
dependence of the energy on the cooling rate, with the system unable to attain equilibrium
within any reasonable timescale at very low temperatures. Measurements of a two-time
auto-correlation function show evidence of two-step relaxation, with plateaux developing as
the temperature is reduced. There are also clear signs of aging when the system is not in
equilibrium. When the equilibrium correlation functions are rescaled by a suitably defined
relaxation time, one finds that they collapse onto a master curve in the late-β relaxation regime,
and that this master curve can be fitted by a von Schweidler law as predicted by mode-coupling
theory (MCT) [14]. The relaxation time is well described by an offset Arrhenius law, indicating
strong glassy behaviour [15]. Although MCT in fact predicts a power law, this does not fit the
data particularly well, and neither does the often-used Vogel–Fulcher law.

By measuring a suitable temporal response function and plotting it parametrically against
the appropriate correlation function (starting from a non-equilibrium configuration), the
fluctuation–dissipation theorem (FDT) is found to be upheld for times somewhat longer than
required for the onset of the correlation function plateaux. For longer times FDT ceases to
hold. After it is broken, one observes non-monotonic behaviour, a feature which has also
been noted in several other models which can be considered to involve activation over energy
barriers [3–9, 16].

3. D > 0

3.1. Relaxation dynamics

It is a simple matter to calculate the equilibrium behaviour of E
N

, for which one finds (in units
of D = 1)

E

N
= 2 exp(−β)

1 + 2 exp(−β)
. (5)

One has instant access to equilibrium states, as one can randomly place the appropriate number
of ±1’s throughout the system to access a particular temperature. Using this feature, we may
study the behaviour of the energy with temperature at a number of different cooling rates,
starting from equilibrium at any chosen temperature. Above T = 1 the system equilibrates
very rapidly at even the fastest cooling rate, so we have chosen a starting configuration of
T = 1, and then cooling is carried out by waiting a time tw = γN at each temperature
decrement of δT = 0.05. The results (averaged over three runs), with the equilibrium curve,
are shown in figure 2(a); the system exhibits strong dependence of the energy upon the cooling
rate. This is characteristic of glassy systems, and qualitatively similar to the results found for
the purely topological froth.
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Figure 2. Energy against temperature for slow cooling and rapid quench. (a) The behaviour of the
energy with temperature under slow cooling (D > 0). The values of tw are the waiting times at
each point. (b) The behaviour of the energy with temperature after a rapid quench (D > 0). The
values of tw are the times, subsequent to the quench, at which the energy is measured.

It is instructive to study also the behaviour of the system when subjected to a rapid quench
from an infinite temperature (β = 0) configuration to a temperature at which it is allowed to
evolve for a time tw. Figure 2(b) shows the results from such a quench for a range of different
temperatures. For longer values of tw we see a minimum develop—this strongly suggests
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Figure 3. The behaviour of the energy with time. (a) Energy against time. The curves for β � 5
reach their equilibrium values, whereas the others do not. (b) Energy against T ln t (where t is
measured in units of N ).

activation is present: at very low temperatures the system cannot overcome the energy barriers
and thus cannot access lower energy states. The temperature at which this minimum occurs is
dependent on the waiting time tw. At very low temperatures, even at the largest waiting times
employed (tw = 100 000N ) the system is unable to reach energies below E

N
∼ 0.09.
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Figure 4. The dominant moves through which this model evolves. (a) Annihilation of two dimers.
This is also possible if each spin is multiplied by −1. (b) Annihilation of a dimer through interaction
with a defect. The defect is shifted in position. (c) Free diffusion of a dimer in a background of
zero spins.

One sees the significance of this value if we turn to the temporal behaviour of the energy.
Figure 3(a) is a plot of E

N
against time, quenched from a fully disordered starting configuration

corresponding to β = 0 to the temperature in question. The initial decay of the energy is fast
and independent of temperature until E

N
∼ 0.09, at which point one sees the existence of a

plateau; the time spent on this plateau is clearly dependent on temperature. Upon departure
from the plateau, the energy relaxes directly to the appropriate equilibrium value; on the graph
shown, the curves for β � 5 equilibrate within the timescale of the simulation, whereas those
for β > 5 do not. This two-time behaviour, with one timescale temperature independent and
the other increasing with inverse temperature, can be understood as follows. The mechanism
for lowering the energy is the annihilation of pairs of adjacent +1 and −1 spins (we shall refer
to a +1,−1 pair as a ‘dimer’). This occurs in two ways: (i) two neighbouring conjugate dimers
can destroy each other to leave four zero spins as shown in figure 4(a), with a reduction in energy
of 4 units, or (ii) a ±1 can annihilate a dimer, thus shifting its position and reducing the energy
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by 2 units as in figure 4(b); note that the ±1 can be part of a dimer at a different orientation.
Any such local arrangements present in the starting configuration will be eliminated quickly
without need of any thermal excitation. Furthermore, dimers can move freely through a
background of zero spins as shown in figure 4(c) until they reach a local environment which
favours annihilation, such as those previously mentioned. This diffusion occurs on a timescale
of two steps per spin, as one can alter the configuration on the left of the arrow in figure 4(c)
in two ways, one of which will be possible and one of which will be forbidden through the
δ-functions in equation (4). Consequently, the initial fast decay of the energy is temperature
independent, and of a diffusive character with an underlying timescale of 2. This fast, diffusive
process describes the behaviour of the energy until the plateau is reached. To describe it further,
one has to consider isolated defects, i.e. isolated spins of ±1. To remove these defects, they
must be paired up with a conjugate isolated defect to form a dimer which can then diffuse
freely as in figure 4(c), and eventually annihilate as in figures 4(a) and (b). An isolated defect
can move through fortuitous collisions with existing dimers, but after the initial fast decay
these dimers become rare. Alternatively, a defect can move by creating a new dimer (reversing
the arrow in figure 4(b)), at an activation energy cost of 2 units and with a probability that
scales as e−2β . As is clear from this figure, one can interpret the resulting configuration as
a dimer-plus-defect in two ways; either of these two possible dimers can diffuse away freely
if adjacent to two zero spins, or annihilate if adjacent to another dimer. This factor of 2 will
cancel that introduced by the diffusive timescale of the dimers. Thus again one has a diffusive
process leading to a final reduction in energy, in this case with a timescale of e2β (since the
timescale for annihilation of the dimer is negligible compared to that to produce the dimer for
e2β � 1). Thus E(t)/N is expected to consist of two diffusive processes: a fast process of
timescale 2 decaying to a state of isolated defects, and a slow process of timescale e2β decaying
to the equilibrium configuration.

The plateau in E(t)/N can be seen more clearly if the time axis is rescaled to T ln t as in
figure 3(b); as the temperature is decreased (β increased) the curves tend to a sharp staircase
form. This is reminiscent of the results found under such rescaling for other kinetically
constrained models [3–9]; in these other models one observes several plateaux corresponding
to several characteristic activation energies, but in this particular case the situation is simpler
as there is only one dominant characteristic activation energy.

Both the fast dimer–dimer annihilation and the slow defect–antidefect pairing are of the
type usually designated as A + B → ∅ [17–19]. In the fast process, A and B are dimers
and ‘anti-dimers’, i.e. a (+1,−1) dimer annihilating with a (−1,+1) anti-dimer; for the slow
process, A and B are isolated defects of opposite sign. In detail these diffusion processes are
more complicated than simple diffusion, but for A+B → ∅ processes the standard asymptotic
behaviour of the density is of the form t−

d
4 , where d is the dimensionality. Therefore we

suggest the same asymptotic (t/τ )−0.5 behaviour for each process2, and fit the following form
to the energy:

E(t)

N
=
(

2

3
− a

)(
1 +

t

2

)−b

+ (a − eeq)

(
1 +

t

e2β

)−c

+ eeq (6)

where a is the plateau value, eeq is the energy per spin in equilibrium, and we expect both b

and c to be approximately 0.5. The results are shown in figure 5; it is clear that these fits are
extremely good. In principle, the plateau value a can be calculated but here we note only that,
as required, a is less than 0.25, which is the maximum energy for a T = 0 frozen state. It is also
less than the value corresponding to randomly removing dimers from the initial configuration

2 In fact, whilst the slow processes are isotropic, this is not the case for the fast dimer diffusion: the latter involves
zig-zags at 30◦ to the axis perpendicular to the common edge between the two cells constituting the dimer.
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Figure 5. The energy fitted with equation (6), using the values shown in the key.
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Figure 6. The behaviour of E/N after a T = 0 quench from equilibrium.

to leave only isolated defects, which gives E(t)/N � 0.2; in fact, one finds a ∼ 0.085 due to
the effect of singleton pairing by dimer collisions. Further investigation of the characteristic
timescales is given below, in connection with the correlation function.

The reader will note that the fast dimer absorption by an isolated defect has been neglected
in the above fit; this can be characterised as type A + C → ∅ + C, and standard asymptotic
behaviour of the density for such a process is that of a stretched exponential [18–21]. There is
also a move-set which involves two dimers interacting ‘off-centre’, such that one of the dimers
and only one of the defects in the other dimer are altered. This leaves either two isolated
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defects or a dimer. However, in view of the excellent quality of the fit we do not consider these
explicitly at this stage.

We have also investigated the behaviour of the energy if one quenches to T = 0 from
an initial equilibrium configuration corresponding to a finite temperature TI . This is in some
sense an investigation of the inherent states of the system [22–26]. At very low temperatures,
the equilibrium state for TI consists mainly of isolated defects—thus when quenched to T = 0
the system very quickly reaches the inherent state. However, at higher initial temperatures
this takes an extremely long time to happen. Thus we show in figure 6 the energy measured
at waiting time tw after a quench from the equilibrium configuration to T = 0. At low TI the
energy stays on the equilibrium curve, as there are no energetically favourable moves to be
made. However, for higher TI the energy tends towards a constant value given by the plateau
in figure 6. Thus we see that if one quenches from an equilibrium configuration with energy
above the plateau, the lowest energy one can reach is that of the plateau—to decrease energy
further would require activated processes, which one cannot perform at T = 0. If one quenches
from an equilibrium start-point with energy below that of the plateau, one cannot decrease the
energy by much as there are very few energetically favourable moves to be made, and so the
curves in figure 3 do not deviate far from the equilibrium curve. The temperature at which one
sees a crossover between these two types of behaviour is T ∼ 0.35: this is the temperature at
which activated processes become important.

3.2. Correlation functions and relaxation time

We investigate the temporal correlations in the system through a two-time single-site spin
correlation function of the form

C(tw, tw + t) =
∑N

i=1 si(tw)si(tw + t)∑N
i=1 s

2
i (tw)

. (7)

Under equilibrium conditions this becomes a function of the relative time t only. The
equilibrium correlation functions (averaged over five runs) for a range of temperatures are
shown in figure 7(a). Asβ increases, plateaux develop, revealing that again two-step relaxation
is taking place. We also show examples of typical out-of-equilibrium correlation functions in
figure 7(b); one can see ageing behaviour, with the correlation function showing dependence
on the waiting time tw after a rapid quench from infinite temperature.

Following the procedure in [1,27], we may define a relaxation time τr as the time at which
the equilibrium correlation function decays to e−1. This is plotted in figure 8 against inverse
temperature; the data can be reasonably fitted by an Arrhenius curve of the form

τr = AeB/T (8)

where A,B are constants. The solid line superimposed on figure 8 corresponds to A =
0.0166, B = 2.535. This indicates that this model displays strong glassy behaviour, in
agreement with the results from the topological model, where an offset Arrhenius law fitted the
data considerably better than either a power law, or a Vogel–Fulcher law [1]. The anomalous
upturn in the curve at very low β is due to the restriction that the spins may only take the
values ±1 or 0; when the density of non-zero spins is very high, it becomes likely that some
defects will sit next to each other, in locally ‘stuck’ configurations which slow the decay of
the correlation function (see figure 9).

However, if we look closely at figure 8, we see that at high inverse temperature the data
seems to be drifting below the curve. If we consider more carefully the expected form of
C(t) it becomes clear that the above definition of τr is not the most appropriate one, since
again, as in the topological model, there are two decay processes. One can understand the
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Figure 7. Correlation functions both in and out of equilibrium. (a) Equilibrium correlation
functions C(t) for (from left to right) β = 1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6. (b) Out of equilibrium
correlation functions C(tw, tw + t) for β = 6 for (from left to right) tw = 102N, 103N, 104N .

origin of the plateaux by considering further the dominant processes involved in evolution
of the system, which are analogous to those in the topological model [1]. In equilibrium, at
low temperatures (high β) there are few defects present in the system. The initial fast decay
from C(t = 0) = 1 is due to dimers diffusing freely through the system, and thus moving the
system away from the starting configuration. Isolated defects, however, need to either absorb
or create a dimer in order to change position; this happens on a much longer timescale than
diffusion of the dimers. Therefore again we have two timescales in the model—fast dynamics
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Figure 8. The logarithm of τr against inverse temperature. The solid line is an Arrhenius law of
the form τr = 0.0166 e2.535/T .
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Figure 9. ‘Stuck’ configurations. On the left, one sees that two spins of +1 adjacent to each other
are unable to be flipped within the isolated cluster, regardless of what values the other two spins
take (and similarly for two adjacent spins of −1). On the right, we see that two next-to-nearest
neighbours of opposite spin cannot be flipped, regardless of the values of the other two spins. A
favourable configuration external to the cluster can provide an opportunity to ‘unstick’ these cells.

due to diffusion of the dimers, and slow dynamics due to movement of the isolated or stuck
defects through absorption/creation of dimers. As noted earlier, the former is temperature-
independent as dimer diffusion costs no energy; however, the position of the plateau and the
subsequent departure from it is dependent on temperature. In particular, the depth of the drop
to the plateau from the initial C(t = 0) = 1 is determined by the equilibrium concentration of
spins of ±1 in local configurations that are free to move with no change to the energy (these
local configurations include the dimers). One can therefore suggest that C(t) might be a sum
of two functions in the following way:

C(t) = αf (t, τ1) + (1 − α)g(t, τ2) (9)

where α and τ2 are functions of T, but τ1 is a constant, and α is the height at which one would
expect to find a plateau. f and g are functions to be determined, but they must be monotonically
decreasing functions of t , satisfying f (0, τ1) = g(0, τ2) = 1 and f (∞, τ1) = g(∞, τ2) = 0.
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Figure 10. Correlation functions for, from left to right, β = 3, 3.5, 4, 4.5, 5, 5.5, 6. The solid
curves superimposed are the best fits of the form C(t) = αe−t/τ1 + (1 − α)e−t/τ2 .

We tried to fit equation (9) to the data using exponentials for both f and g such that C(t)

is of the following form:

C(t) = αe−t/τ1 + (1 − α) e−t/τ2 . (10)

The results are shown in figure 10; in order to fit more accurately, the system size has been
increased to N = 160 000. The fit is extremely good at high values of β (low temperature),
although at lower values there is some deviation. We also note that the fitted form drifts below
the data at very low values of C(t); there may be some correction to this form which we have
not taken into account. We do not claim that this form is exactly correct; nevertheless, it is
a useful approximation that may allow us to separate out the two timescales. Previously we
stated that we expect τ1 to be independent of temperature—figure 11(a) shows that this seems
to be the case at low β, although as β increases it becomes harder and harder to fit τ1 accurately
due to the extremely high position of the plateau. We have shown the error bars on a few of
the points to give some idea of the difficulty in accurately performing this fit at high β; one
can see that it is impossible to say anything sensible about the functional form of τ1(β) for
β > 4.5. However, the naive theory as discussed earlier in connection with E(t) gives τ1 = 2
and the data is in general accord.

We turn now to τ2 and consider the dominant processes involved in relaxation in the β-
relaxation regime. These are, as previously mentioned, absorption and creation of dimers.
Creating a dimer costs 2 units of energy. Each dimer will rapidly diffuse freely through the
system until it is absorbed by a defect; this happens quickly as it is an energetically favourable
process. Therefore we have energy barriers of 2 and probabilistic barriers of 2β in this regime.
Absorption of pre-existing dimers also has a characteristic timescale of ∼e2β as the fraction
of cells occupied by dimers scales as e−2β . This is reflected in the behaviour of the second
timescale τ2 as shown in figure 11(b): τ2 exhibits the Arrhenius behaviour of τ2 = AeBβ , with
B = 2.12. We have shown error bars on a few of the points; these tend to suggest that the
value of B is not exactly 2; however, it is encouraging for the value to be so close given that
this is a very crude theory.
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Figure 11. The behaviour of the fitting parameters τ1, τ2 and α with temperature; obtained by
fitting C(t) = αe−t/τ1 + (1 − α)e−t/τ2 . (a) τ1 against inverse temperature. (b) τ2 against inverse
temperature; the superimposed line is y = AeBβ , where B = 2.12. (c) (next page) α against

inverse temperature; the superimposed curve is y = 12e−β

(1+2e−β )3
.

The plateau parameter α, is somewhat more complicated. As noted earlier, the initial fast
decay of the correlation function is dominated by all the local configurations that can move
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Figure 11. Continued
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Figure 12. Zero-energy moves for oscillating +1 like-pairs. An identical configuration exists for
−1 like-pairs.

freely, without any energy costs. Thus we expect the plateau height to occur roughly at a
value of 1 minus the fraction of total spins which can move freely in equilibrium conditions.
This fraction contains the dimers, but also certain configurations of like-pairs (i.e. +1,+1 and
−1,−1) which can oscillate, as shown in figure 12, although they cannot delocalize without
interacting with dimers. In equilibrium the probability that a given defect is part of a +1,−1
dimer is

6p(1)p(0)2 = 6e−β

(1 + 2e−β)3
(11)

where p(s) is the probability of a spin of value s (the factor 6 comes from the fact the second
defect may be situated on any of the six nearest neighbours to the original defect). The
probability that any given defect is part of an oscillating like-pair is given by 12p(1)p(0)2 (the
factor 12 is because there are 12 positions at which the second defect may be situated to make
up an oscillating like-pair). However, subsequent to t = 0 one supposes that at any instant



5162 L Davison et al

in time half of the oscillating like-pairs will be in exactly the same position as at time t = 0,
and the other half will be in the alternative position. All other processes which cost no energy
involve at least three defects, and thus are suppressed in comparison by factors of eβ or e2β .
As we are investigating the region of β > 2.5, we neglect those, and simply suggest

α(β) = 12e−β

(1 + 2e−β)3
. (12)

Figure 11(c) shows this predicted curve of α against the simulation results for fitting with a
sum of two exponentials, from which good agreement can be seen. Therefore for all three
parameters (τ1, τ2, α) the results of the simulations provide some support to the theory of the
dominant processes involved in the evolution of this system.

Note that the relaxation behaviour of the equilibrium correlation functionC(t) differs from
that ofE(t) in two important respects. One is that forC(t) the system is always in macroscopic
equilibrium so that the macroscopic distribution of non-zero spins fluctuates around a constant
value throughout the dynamics, and all the observed results are due to re-arrangements of the
location of these non-zero spins, i.e. annihilations are balanced by creations on a macroscopic
level. The second is that one has merely to move a non-zero spin in order to affect C(t),
whilst for E(t) to decay from the infinite temperature starting configuration one must actually
annihilate ±1 spins overall.

3.3. Response and overlap functions

We continue to show that this simple spin model behaves in the same fashion as the topological
froth by studying response functions in relation to the fluctuation–dissipation ratio. Again we
concentrate on the single-site (averaged) case, for which we require the linear response at a
site to an infinitesimal perturbation field at the same site. The system is quenched from β = 1
to the temperature required, and then allowed to evolve at that temperature until time tw when
a field of magnitude h and random sign εi = ±1 is applied. Therefore the perturbation to the
energy introduced by the field/charge interaction is

�E(t) = h

N∑
i=1

εisi(t)θ(t − tw) (13)

where θ(t − tw) is the Heaviside function: θ(t − tw) = 1∀t � tw; 0 otherwise. h is a carefully
chosen compromise which gives both linear response and a reasonable signal-to-noise ratio.
The quantity which one measures is then the linear response function G(tw, tw + t):

G(tw, tw + t) =
∑N

i=1 εisi(tw + t)

h
∑N

i=1 s
2
i (tw)

. (14)

One expects a parametric plot of −TG(tw, tw + t) against C(tw, tw + t) to have a slope of −1
where the equilibrium fluctuation–dissipation ratio is upheld. Breaking of this conventional
equilibrium ratio is characteristic of ageing in glasses [28,29]; the form of the slope when it is
broken provides some information about the nature of the system.

Figure 13 shows the results at various temperatures: these show the same features as the
topological froth, namely a breakdown of the fluctuation–dissipation relation when tw is too
short for equilibration to have occurred (for tw → ∞ the system is already in equilibrium when
the perturbation is introduced and FDT holds) and a reduction in the magnitude and an eventual
change in sign of the slope as t increases and the correlation function decreases. The non-
monotonicity is a consequence of the existence of an absorbing equilibrium state: competition
exists between the field, which encourages the non-zero spins to settle on energetically
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Figure 13. Parametric plots of the response function against the correlation function (each averaged
over ten realizations of the charge distribution). (a) β = 4. From lower curve to upper curve,
tw = 10N, 102N, 103N . The straight line of slope −1 is shown for comparison. (b) β = 5. From
lower curve to upper curve, tw = 10N, 102N, 103N and 104N . The straight line of slope −1 is
shown for comparison.

favourable sites and thus increases the response, and the natural relaxation to equilibrium,
which removes non-zero spins altogether thus reducing the response (one should recall that
spins of value 0 make no contribution whatsoever to the response). At time tw (that is for t = 0)
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when the field is switched on, the response is on average zero. If tw is short enough that the
fast processes remain dominant (i.e. E(tw) has not yet reached the intermediate plateau) then
these energetically favourable fast moves are quickly carried out. This simultaneously removes
many non-zero spins, and also settles many non-zero spins on energetically favourable sites;
the former process does not on average decrease the response since at tw it is zero on average
anyway, and the latter process increases the response. Once the dimer concentration has relaxed
to the equilibrium level (i.e. after the onset of the plateau in E(tw + t)) the response increases
more slowly as the evolution of the system is dominated by the movement of isolated defects,
which occurs on much longer timescale. The applied field causes these isolated defects to tend
to settle on energetically favourable sites; however, as time passes they will be removed from
the system until the equilibrium concentration is reached. Therefore one expects the response
to peak before settling at a finite value once equilibrium has been reached (the final value
reached is dependent on the waiting time tw through the normalization of both the response
and the correlation functions).

In order to distinguish between different types of ageing, Barrat, Burioni and Mezard
suggested the study of the overlapQtw(t)between two replicas [30]. These replicas are identical
configurations at time tw, but are subsequently evolved according to different stochastic thermal
noise (but of the same characteristic temperature), with Qtw(t) of the form

Qtw(t) =
∑N

i=1 σ
1
i (tw + t)σ 2

i (tw + t)∑N
i=1

(
σ 1
i (tw)

)2 (15)

where σ is some order parameter of the system and the superscripts 1, 2 refer to replicas 1, 2.
Barrat et al classify systems as either Type I or Type II models: for the former, the appropriate
Qtw(t) (normalized to 1 at time t = 0) decays to a finite, non-zero value in the double limit
limtw→∞ limt→∞ Qtw(t); this class includes models which are dominated by coarsening (for a
review of coarsening see [31]). For the class of Type II, Qtw(t) decays to zero in this limit; this
class includes glassy systems [7]. In equilibrium (i.e. tw greater than the equilibration time of
the system) there is no tw dependence so Qtw(t) = Q(t); one also finds that Q(t) = C(2t)
(for details see [30]).

For this model, the overlap we use is as given in equation (15) with σi = si . We start
from non-equilibrium conditions, where the system is quenched at t = 0 from β = 1 to
the temperature in question, and then allowed to run at that temperature until time tw when
measurements commence. In figure 14 we show the overlap and C(tw, tw + 2t) against time
for β = 5; initially Q is almost identical to C(tw, tw + 2t), but it drops below C(tw, tw + 2t) at
longer times. For larger values of tw this takes longer to happen since these systems start off
closer to equilibrium. We also show the equilibrium curves, for which Q(t) = C(2t).

Given that Q(t) = C(2t) in equilibrium, we can check our proposed functional form for
the equilibrium correlation function through a parametric plot of the overlap against C(t). If
C(t) is indeed of the form given in equation (10) then one expects

Q(t) = C(2t) = αe−2t/τ1 + (1 − α)e−2t/τ2 . (16)

Thus for long times one would expect to find

Q(t) ∼ (1 − α)e−2t/τ2 ∼ C(t)2

(1 − α)
(17)

and for short times

Q(t) ∼ αe−2t/τ1 + (1 − α) ∼ (C(t) + α − 1)2

α
+ (1 − α). (18)

Figure 15 shows parametric plots of the overlap Q(t) against the correlation function
C(t) (in equilibrium) for different values of β. These plots should be ‘read’ from the top right
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Figure 14. The behaviour of C(tw, tw + 2t), Qtw (t) with time for β = 5. Qtw (t) is given by the
dashed curves and C(tw, tw + 2t) by the solid curves. From lower curve pair to upper curve pair,
tw = 10N, 102N, 103N, 104N . The uppermost pair is that of equilibrium, with Q(t) = C(2t).

corner, i.e. t = 0 occurs when Q(t) = C(t) = 1, and long times correspond to low values
of Q(t), C(t). We have plotted on each the expected short-time and long-time behaviour as
given in equations (17) and (18), where the values of α are those fitted in the previous section.
One sees that the short-time expression fits the data extremely well, supporting our hypothesis
that the initial decay of the correlator, from 1 down to the plateau, is exponential. The longer
time behaviour initially fits very well for both β = 4 and 5 (figures 15(a) and (b)), although
as time goes on the theoretical curve drops below the data. This tends to suggest that at long
timescales there is some correction to this fitted form which we have not taken into account;
the second relaxation may be some kind of modified exponential rather than pure exponential.
For the case of β = 3 (figure 15(c)) the values of τ1, τ2 are much closer together and thus the
two timescales are not so well separated. Therefore one does not see a well-defined plateau
in the equilibrium correlation function (see figure 7(a)), and the cusp in this parametric plot
is also not as clear. The cusp in these plots is a direct result of the existence of the plateau;
since Q(t) = C(2t) in equilibrium, the overlap function Q(t) reaches the plateau before the
correlator C(t). Thus there is a time period for which Q(t) is effectively stationary whilst
C(t) is still dropping fast. This is followed by a time period for which the plateaux in both
functions overlap, and therefore both are stationary, and then there is a regime in which Q(t)

drops away from the plateau whilstC(t) is still stationary. This tells us that whilst the dominant
process is diffusion of the dimers, the two copies of the system are restricted to a narrow area
of phase space; this is because the isolated defects have not yet moved in either copy, and thus
the overlap will be high. It is only once the activated processes become dominant that the two
copies can move well apart from each other.

Figure 16 shows a parametric plot of the overlap against the correlator for the non-
equilibrium case, i.e.Qtw(t) againstC(tw, tw +t). The initial behaviour is independent of tw and
in fact follows the short-time behaviour we expect in equilibrium. However, as C(tw, tw + t)
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(a)

(b)

Figure 15. The overlap function Q(t) against the correlation function C(t). In each case the dot-
dashed curve is the expected short-time behaviour and the dashed curve is the expected long-time
behaviour, if equation (10) holds. The values of α are those fitted in the previous section.(a) β = 5,
α = 0.0899. (b) β = 4, α = 0.222. (c) (next page) β = 3, α = 0.447.

drops below 0.9, the curves fall below the equilibrium behaviour and we see evidence of
dependence on tw. The cusp that develops is sharper for larger tw, with the behaviour tending
towards that of equilibrium. For the smaller values of tw there is no channelling in phase space
because the starting configuration is well away from equilibrium, and thus there are many
different energetically favourable routes to be taken. It is clear from these figures that our
model falls into the class of Type II, as the overlap decays to zero rather than a finite value as
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(c)

Figure 15. Continued

Figure 16. Qtw (t) against C(tw, tw + t) for β = 4. From lower to upper curve, tw =
10N, 102N, 103N, 104N . The dotted curve is that of expected short-time behaviour for Q(t)

against C(t) in equilibrium.

it would do for Type I systems; this is as expected as we believe our model to be glassy rather
than dominated by coarsening.

To summarize our findings so far, we have shown that the D > 0 model does indeed
give results that are quantitatively similar to those of the topological model, whilst having
the advantage of being simpler, computationally faster and more suited to analytic study. We
have developed a conceptual picture involving both fast and slow dynamics, and many of the
features of this model can be described in terms of this picture. We find good agreement
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between theoretical predictions and data for the behaviour of the correlation function, energy
and overlap function.

4. D < 0

4.1. Relaxation dynamics and correlation functions

We shall now turn our attention to the model withD < 0, settingD = −1. Unlike the previous
case, this model does not have a unique absorbing ground state; instead, there are a great many
degenerate ground states, although some of these are not accessible using our dynamical rules.
This raises the possibility that in preparing an ‘equilibrium’ system by randomly placing
throughout the lattice the correct number of ±1’s for that temperature, one might pick out
an inaccessible configuration. However, the probability of this occurring is so small as to be
negligible, and we have checked that the results obtained by this method do not differ from
those obtained through waiting long enough for equilibration to occur. Thus when we refer to
an equilibrated system, we mean one that has been prepared through a random allocation of
the correct number of non-zero spins.

We expect the D < 0 model to also show glassy behaviour with two different timescales,
but as the system now favours si = ±1 rather than si = 0, the equivalent of the free-moving
dimers will be fast-moving pairs of spin zero, and the analogue of the slow-moving energetically
trapped defects will be isolated zero-spins. With the correct choice of observables, one expects
to see all the same features as with the D > 0 model. However, although one expects
similar qualitative behaviour3, the quantitative behaviour should be different—this is because
A +A → ∅ processes replace those of type A +B → ∅ and also because the zero-spin dimers
cannot move quite so easily through the ±1 background. As shown in figure 9 there are certain
configurations that simply cannot move.

Simulations were again performed for N = 9900. Figure 17(a) confirms that we do see
glassy behaviour when the system is cooled at different cooling rates. A plot of the energies
attained after running for a variety of times tw at various temperatures T from a starting
configuration corresponding to infinite temperature are shown in figure 17(b); the presence of
activated processes is indicated by the clear minima and by the plateau at E

N
∼ −0.94 below

which the system cannot penetrate at low temperatures, even after the longest waiting times.
Again one can see this plateau clearly in a plot of energy against time subsequent to a quench
from infinite temperature (see figure 18(a)); one can again re-scale the time axis to T ln t in
order to see the staircase shape appear (figure 18(b)).

Because the background does not necessarily allow the dimers to move freely, one must
consider the possibility that the dimer diffusion may be dependent upon the density of non-
zero spins. In equilibrium, this density is dependent upon the temperature; therefore we have
investigated the persistence of non-isolated zero-spins under equilibrium conditions. In order
to do this, one can identify all zero-spins that have at least one neighbouring spin which is
also zero in the starting equilibrium configuration; as the system evolves, one can measure the
fraction of these that have NOT been involved in a move. Figure 19(a) shows these results
for D < 0; one can see that the persistence is weakly temperature dependent. One cannot
sensibly investigate the effect at lower temperatures because there are so few zero-spins present
in equilibrium conditions. For comparison, we also show the results for the D > 0 model,
where the persistence is defined as the fraction of non-zero spins with at least one neighbour
of the opposite sign that have NOT undergone a move. The results are shown in figure 19(b)

3 Except in pathological cases.
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Figure 17. Energy against temperature for slow cooling and rapid quench. (a) The behaviour of
the energy under cooling (D < 0). The values of tw are the waiting times at each point.(b) The
behaviour of the energy after a rapid quench (D < 0). The values of tw are the times, subsequent
to the quench, at which the energy is measured.

and show no temperature dependence. This result has implications for the form of both the
correlation function and the energy.
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Figure 18. The behaviour of the energy with time. (a) Energy against time. (b) Energy against
T ln t , where t is measured in units of N .

In order to produce a fit for the energy relaxation from a starting configuration
corresponding to infinite temperature, one must think very clearly about the processes involved.
The initial fast decay to the plateau involves two pairs of zero-spin dimers annihilating; this is
of typeA+A → ∅, which one expects to give a t−

d
2 dependence in the energy in the asymptotic

limit [18, 19]4. At this stage the density dependence of the dimer diffusion is not likely to be

4 In fact the critical dimension dc = 2 for this theory, and one expects logarithmic corrections at this point, but we
shall ignore these.
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Figure 19. Persistence functions for both D < 0 and D > 0. (a) The persistence of non-isolated
zero-spins for D < 0. (b) The persistence of non-zero spins with at least one opposite neighbour
for D > 0.

strong enough to cause substantial deviation from the A + A → ∅ behaviour so one expects
the initial decay to behave as (1 + m1t)

−1; however, it is not trivial in this case to determine
what the value of m1 might be. Because the zero-spin dimers are not completely free to move
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diffusively through the background we are unable to produce an accurate estimate; we simply
expect a value of m1 of the order of 1. For the slow decay from the plateau to equilibrium, the
density dependence of the dimer diffusion will have a substantial effect because there are far
more ±1 spins present as the system flows closer to equilibrium. The slow process involves
the pairing of isolated zero-spins through the mechanism of dimer creation and absorption; it
is unlikely to behave exactly as an A + A → ∅ process given that the dimers cannot diffuse
freely to facilitate it. One can fit this latter part separately, and one finds it takes the form
a1(1 + te−2β)−κ ; the factor of two in the exponential was fitted as a free parameter and a result
of almost exactly 2 was obtained for every temperature. This is in keeping with the energy
barrier of 2 involved in creating a dimer. The parameter a1 is naturally associated with the
plateau value and clearly takes a value ∼ −0.94. The value of κ is approximately 0.6; this is
substantially slower than the behaviour one would find asymptotically with a pure A+A → ∅
process and is due to the inhibited movement of the dimers.

Having fitted the latter part, we attempted a fit of the full dataset of the form

E

N
=
(

−2

3
− a1

)
(1 + m1t)

−κ1 + (a1 − eeq)(1 + te−2β)−κ2 + eeq (19)

where a1, κ1, κ2,m1 are all parameters to be determined, and eeq is the equilibrium energy per
cell at the temperature in question. One cannot fit this well to the data, as shown in figure 4(a):
the decay is faster than that of a power law in the latter stages of the decay to the intermediate
plateau. Thus we must think again about the processes involved in the relaxation of the energy
to the plateau.

As mentioned earlier, besides the A + A → ∅ fast processes, there is also a fast
process involving a dimer interacting with a defect to leave an isolated defect—this is of
type A + C → ∅ + C, and thus typically gives a stretched exponential for the asymptotic
behaviour of the energy with time. We did not need to include these in the fit to the energy
for D > 0; however, it is clear from the poor fit in figure 20(a) that in the D < 0 case we
cannot neglect them. We therefore expect the energy density E/N to be approximated by the
following form:

E

N
=
(

−2

3
− a1

)
(a2(1 + m1t)

−κ1 + (1 − a2)e
−(m2t)

ν

) + (a1 − eeq)(1 + te−2β)−κ2 + eeq (20)

where a1, κ2 can be fitted separately from the decay from the plateau to equilibrium, and a2, κ1,

ν,m1,m2 are parameters to be determined. The theory would suggest that κ1 should be close
to 1, and that m1 should be of the order of 1. Figure 20(b) shows these fits superimposed on
the data; it will be noted that agreement is excellent. The values of the parameters are given in
the caption; in particular, one notes that κ1 is extremely close to 1 in each case, and that m1 is
indeed of the order of 1. We have already discussed the power law decay from the intermediate
plateau to equilibrium. Without developing a much more complex theory one can say little
about the parameters in the stretched exponential term.

With regards to the correlation function, in order to study the D > 0 model we chose a
function which focussed on the defects. We do the same in this case, and thus the correlation
function we measure is

C(tw, tw + t) = 1

1 − peq(0)

(∑N
i=1 δs(tw),0δs(tw+t),0∑N

i=1 δs(tw),0
− peq(0)

)
(21)

where peq(0) is the equilibrium density of zero spins at the temperature of interest. The
somewhat unusual normalization is necessary to allow the correlation function to decay to
zero rather than to a finite value equal to peq(0); this finite plateau comes about because a
fraction peq(0) of the cells that have spin zero at time t = 0 can be expected to have spin zero
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Figure 20. Fits to the energy. (a) The energy for (from left to right) β = 5, 6, 7 fitted with
equation (19); the fits are the dashed curves. The parameters (a1,m1, κ1, κ2) are as as follows:
for β = 5, (−0.942, 1.02, 0.49, 0.52); for β = 6, (−0.941, 0.93, 0.50, 0.51) and for β = 7,
(−0.941, 0.93, 0.49, 0.54). (b) The energy fitted with equation (20); the fits are the solid curves.
(a1, a2,m1, κ1,m2, ν, κ2) are as follows : for β = 5, (−0.936, 0.61, 0.748, 0.98, 0.0385, 0.638,
0.62); for β = 6, (−0.937, 0.57, 0.77, 0.977, 0.0389, 0.64, 0.59) and for β = 7, (−0.937, 0.66,
0.46, 1.0, 0.0313, 0.474, 0.59).

at any later time. In the D > 0 model, we did not have to take into account this effect since
the contribution from spins that remain +1 (or −1), and those that swap from +1 to −1 (or −1
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Figure 21. Correlation functions in equilibrium conditions. From left to right, β =
2.5, 3, 3.5, 4, 4.5, 5. The superimposed fits are of the form C(t) = αe−t/τ1 + (1 − α)e−(t/τ2)

γ
.

to +1) cancel out. Figure 21 shows that this function does indeed produce similar results to
those of the D > 0 model: again, we can see clear evidence of two-step relaxation. The fits
superimposed upon the data are of the following form:

C(t) = αe−t/τ1 + (1 − α)e−(t/τ2)
γ

. (22)

It will be noted that these fits are extremely good, and also that the relaxation in the long-
time region follows a stretched exponential rather than an exponential as in the D > 0 case.
This is a result of the temperature dependence of the dimer diffusion, which slows the decay
from the plateau. Thus γ in figure 22(d) is less than one in all cases. We do not have a full
theory of the behaviour of the system in this region and thus cannot comment further on the
behaviour of this exponent.

One might naively expect the predicted value of τ1 to be altered by the fact that the zero-
spin dimers are not necessarily free to move through the ±1 background. In fact this is not
the case: τ1 is the timescale for the dimers that are free to move only, and we can still expect
those free dimers to move with a timescale of 2, independent of temperature, exactly as in the
D > 0 case. Figure 22(a) shows the values of τ1 against inverse temperature obtained from
fitting the correlation functions with equation (22)—this data is in keeping with a temperature-
independent value of τ1 = 2. Those dimers that are not free to move do not contribute to the
initial fast decay of the correlation function. The parameter that the extra jamming does alter
is α: one expects the correlation function to decay to a plateau value which is one minus the
density of free zero-spins (although one must remember to normalise correctly as in equation
(21)). Thus we have to calculate the probability of obtaining a zero-spin dimer which can
move (shown in figure 4(c), but one should now think of the ±1 as being the background and
the zero-spins as being the dimer), and also of obtaining a zero-spin pair which can oscillate
(as in figure 12). This gives a probability of 24p(0)p(1)2; thus after normalisation, we expect
α to behave as

α = 12eβ

(1 + 2eβ)2
− e−β

2
. (23)
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Figure 22. The behaviour of the fitting parameters α, τ1, τ2 and γ with temperature. The data
was obtained by fitting the form C(t) = αe−t/τ1 + (1 − α)e−(t/τ2)

γ
to the equilibrium correlation

functions. (a) τ1 against inverse temperature. (b) τ2 against inverse temperature. (c) (next page) α

against inverse temperature; the superimposed curve is y = 12eβ

(1+2eβ )2
− e−β

2 . (d) γ against inverse
temperature.
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Figure 22. Continued

Figure 22(c) shows this curve superimposed upon the fitted values of α against temperature;
the data shows reasonable agreement with the theory.

One can see from figure 22(b) that we again observe Arrhenius behaviour for τ2. In this
case, however, the best-fit Arrhenius law is τ2 ∼ e2.4β , whereas the energy barrier argument
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would suggest τ2 ∼ e2β . As mentioned earlier, we lack a full understanding of the behaviour
in this region, and can only say that this discrepancy is probably also due to the fact that the
±1 background does not allow the zero-spin dimers to diffuse freely.

4.2. Response and overlap functions

We continue our study of the D < 0 model by observing the response of the system to an
applied field. As before, a field hεi is applied at time tw, with εi = ±1 randomly at each site.
The perturbation this introduces to the energy is �E(t) = h

∑N
i=1 εiδs(t),0 θ(t − tw), where

θ(t − tw) is again the Heaviside function. The observable we then measure is the following
linear response function: G(tw, tw + t):

G(tw, tw + t) = 1

h(1 − peq(0))

(∑N
i=1 εiδs(tw+t),0∑N
i=1 δs(tw),0

)
. (24)

Again one expects a parametric plot of −TG(tw, tw+t) against the correlation function (defined
as in equation (21)) to yield a slope of −1 where the conventional FDT is upheld.

Figure 23 shows such a parametric plot for a variety of temperatures and waiting times tw.
One can see the main features of the equivalent D > 0 plots in these figures: FDT is upheld
for a time which increases as tw increases, and sometime after it is broken the curves display
non-monotonic behaviour. As in the D < 0 case, this turnover in the response after long
times (i.e. low values of the response and of C(tw, tw + t)) is due to the isolated defects being
eliminated from the system, thus decreasing the response. Note that although this turnover
can been seen clearly in figure 23(a), one cannot always run the simulations for long enough
to observe this effect at low temperatures and large waiting times; in fact, it is not observable
for any waiting times for β = 6 (figure 23(c)). However, in addition to this behaviour,
at very low temperatures and for short tw we see an intermediate ‘hump’ appearing before
the turnover due to the isolated defects—see figures 23(b) and (c). This is a consequence
of the presence of temperature-dependent dimer diffusion; blocked dimers exist which take
some time to become mobile and cannot diffuse freely through the system. Instead of being
eliminated before they can make a substantial contribution to the response, some dimers persist
and considerably increase the response before they are finally removed. This accounts for the
intermediate humps shown for short waiting times in figures 23(b) and (c); at longer waiting
times this effect is imperceptible because the dimers have moved closer to equilibrium. It is
also imperceptible at higher temperatures (lower β) because the dimers can move more freely
and equilibrate more quickly.

Let us turn now to the overlap function, defined in this case as

Qtw(t) =
∑N

i=1 δ
1
si ,0

(tw + t)δ2
si ,0

(tw + t)∑N
i=1 δ

1
si ,0

(tw)
. (25)

Recalling that in equilibrium one finds Q(t) = C(2t), we can use the equilibrium overlap to
test of our proposed form of C(t), as given in equation (22). If this equation holds we expect
to find that for short times

Q(t) ∼ (αe−2t/τ1 + (1 − α)) ∼
(
(C(t) + α − 1)2

α
+ (1 − α)

)
(26)

and for long times

Q(t) ∼ (1 − α)e(−2t/τ2)
γ ∼ C(t)2γ

(1 − α)2γ
. (27)



5178 L Davison et al

0.0 0.2 0.4 0.6 0.8 1.0
Correlation

0.00

0.20

0.40

0.60

0.80

1.00

R
es

po
ns

e

τω=10Ν
τω=102Ν
τω=103Ν
line of slope –1

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Correlation

0.00

0.20

0.40

0.60

0.80

1.00

R
es

po
ns

e

τω=10Ν
τω=102Ν
τω=103Ν
τω=104Ν
equilibrium
line of slope –1

(b)

Figure 23. Parametric plots of the response against the correlation function for different
temperatures and waiting times. (a) β = 2.5. (b) β = 4.5. (c) (next page) β = 6.

Figure 24 shows the equilibrium results for β = 2.5 and 3.5; the superimposed curves are
the expected short- and long-time behaviour using the values of α, γ obtained from fitting
the correlation functions with equation (22). The theoretical behaviour clearly fits the data
very well, lending further support to equation (22) as a description of the behaviour of the
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Figure 23. Continued

equilibrium correlation functions. We also see that Q(t) decays to zero, thus placing the
D < 0 model in the Type II class along with the D > 0 model.

5. Concluding remarks

We have studied a simple lattice-based spin model which has a non-interacting Hamiltonian,
but constrained dynamics, and find it to exhibit both glassy behaviour and behaviour typical
of diffusion-limited reaction models. A single parameter D distinguishes two types of ground
state. By choosing D > 0, one can study a system with a unique ground state, evolving
by way of a number of annihilation–diffusion processes which are either fast temperature-
independent or slow temperature-dependent diffusive processes, with the latter slower by a
factor exponential in inverse temperature. We can categorize the fast processes as A+ Ā → ∅,
A + A (or Ā + Ā) → C + C̄, A (or Ā) + C (or C̄) → ∅ + C (or C̄); and the slow processes
as C + C̄ → A (or Ā), where A and Ā are dimers and anti-dimers, and C and C̄ are isolated
defects of opposite sign. The isolated defects move isotropically, but the dimers and anti-dimers
move anisotropically, and come in three different ‘flavours’ according to their orientation. The
different flavours can also scatter amongst themselves via the process Aα + Āα → Aβ + Āβ ,
where α, β label different flavours. Since A �= Ā and C �= C̄, A + Ā processes are equivalent
to the usual A + B processes, and C + C̄ are equivalent to C + D processes. In this paper we
study the full set of processes simulationally but only provide a simplified adiabatic theoretical
fit. For D < 0, the ground state is highly degenerate and the system evolves according to the
fast annihilation–diffusion processes A + A → ∅, A + A → C + C, A + C → ∅ + C, and
the slow diffusive process C + C → A, where A corresponds to a pair of zero-spins and C

to an isolated zero-spin. Again there are three different flavours of A corresponding to the
three different orientations, and these can scatter through Aα + Aα → Aβ + Aβ . In this case
the movement of A’s are hindered by the background due to the ground state degeneracy, and
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(a)

(b)

Figure 24. Overlap Q(t) against C(t) in equilibrium. In each case the dashed curve is the expected
short-time behaviour and the dot-dashed curve is the expected long-time behaviour, if equation (22)
holds. The values of α, γ are those fitted in the previous section. (a) β = 2.5. (b) β = 3.5.

even the fast processes have some temperature dependence. As before we have studied the
full dynamics simulationally but only provide a simplified adiabatic analysis. There is clearly
scope for providing a full analytic theory.

For both the D > 0 and the D < 0 case one finds two-step relaxation, on two different
timescales which are separable and can be attributed directly to the different processes. We find
that the energy in theD > 0 case can be fitted with the sum of two terms, each behaving like the
asymptotic predictions of an A+B → ∅ theory (for the slow processes, C + C̄ → A, but the A
are eliminated on a timescale which is negligible compared to that of the slow process, so this
behaves asC+C̄ → ∅). In theD < 0 case one cannot fit the energy adequately in the approach
to the intermediate plateau without including induced dimer absorption (A + C → ∅ + C)
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along with the A + A → ∅ fast diffusive processes. We also find that the slow diffusive
process does not behave like a pure C + C → ∅ process; this is in part due to the fact that
the dimer diffusion is now temperature dependent. We have studied the correlation functions
for D positive and negative; in both cases, a naive theory gives a predicted form for these
which fits the data extremely well. Studies of the overlap in equilibrium serve to reinforce
these results. An investigation of the response function in both cases yields non-monotonic
response curves, and for D < 0 the temperature-dependent diffusion leads to more complex
results: one finds intermediate humps for very low temperatures and short waiting times,
which can be understood within the framework of the processes we have already discussed.
Non-monotonicity has also been observed in the response functions of many other models
which involve activated processes [3–9, 16]. To distinguish between Type I (coarsening) and
Type II (glassy) tendencies we have examined an overlap function measuring the temporal
auto-correlation of two independently evolving clones of a configuration. This demonstrates
that the present system is of Type II, for D both positive and negative.

In this paper we have employed a hexagonal basis for the cell edges. This is naturally
motivated by analogy with a two-dimensional froth. It also corresponds to the case of the
simplest non-trivial vertices, which have valence three, and consequently is special in that any
cell has two nearest-neighbour cells which are nearest neighbours of one another. Extensions
are clearly possible, both to higher valence vertices in two dimensions and to minimal and
non-minimal vertices in higher dimensions, but we do not pursue them here. We merely note
that systems with valence greater than (d + 1), where d is the dimensionality, are more prone
to sticking.
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